

- Introduction Frankfured Vereview Building Site Existing Design Thesis Furpose Depth Study Concrete Redesign Redesign Overview Floor Diaphragm Columns and Foundations Lateral Systems Breadth Study One Architectural Use Requirements Layout Aspects and Plans Breadth Study Two Lighting Daylighting Analysis Find Design Conclusions and Questions

- **Building Overview**
- Location: King of Prussia, PA
- Use: High-End Commercial Offices
- Price: \$40 Million
- Area: Approx. 200,000 sq. ft.
- Size: 6 Stories, 78′ at Main Roof
- Owner: BPG Properties, Ltd.
- Architect: SPG3 Architects

- Introduction

 Building Overview
 Feeddingson
 Existing Design
 Thesis Purpose

 Depth Study Concrete Redesign

 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems

 Breadth Study One Architectural

 Use Requirements
 Layout Aspects and Plans

 Breadth Study Two Lighting

 Daylighting Analysis
 Final Design

 Conclusions and Questions

Building Site

- Introduction

 Building Overview
 Fending Set
 Existing Design
 Thesis Purpose

 Depth Study Concrete Redesign

 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems

 Breadth Study One Architectural

 Use Requirements
 Layout Aspects and Plans

 Breadth Study Two Lighting

 Daylighting Analysis
 Final Design

Building Site

- Booling Undergenergies
 Boopth Study Concrete Redesign
 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems
 Breadth Study One Architectural
 Use Requirements
 Layout Aspects and Plans
 Breadth Study Two Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

Existing Design

- 5" Long ¾" Diameter Headed Studs
- Two Different Lateral Systems
 - Two moment frames in the long direction
 - Two eccentrically braced frames in the short direction
- Spread footings throughout the building
- Additional strip footings under the ground floor retaining wall

- Buttery, the construction of the second se

Existing Design

- Theorem 1
 Theorem 2
 Depth Study Concrete Redesign
 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems
 Breadth Study One Architectural
 Use Requirements
 Layout Aspects and Plans
 Breadth Study Two Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

Thesis Purpose

- To redesign current steel structural system
- To reduce cost, time, and inefficiency in the overall design.
- To create a more functional, serviceable final product.

<section-header> DCTUENCE Indiang Same Anading Same</li

- Recenter Quarter
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems
 Breadth Study One Architectural
 Use Requirements
 Layout Aspects and Plans
 Breadth Study Two Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

Redesign Overview

- Beams
 - 24″x 24.5 ″

- Spread Footings

- Introduction

 Building Overview
 Building Site
 Existing Design
 Thesis Purpose

 Depth Study Concrete Redesign

 Redesign Overview
 How Handmark
 Columns and Foundations
 Lateral Systems

 Breadth Study One Architectural

 Use Requirements
 Lavout Aspects and Plans

 Breadth Study Two Lighting

 Daylighting Analysis
 Final Design
 Conclusions and Questions

Floor Diaphragm

- Pan-Joist Assembly ■ Spans 40' Direction
 - Two Hour Fire Rating
 - Final Design
 - 30" Forms
 - 6″x 20″ Ribs
 - 4.5" Topping Slab
 - 24.5" Overall Depth

Floor Diaphragm

- Introduction

 Building Overview
 Building Site
 Existing Design
 Thesis Purpose

 Depth Study Concrete Redesign

 Redesign Overview
 These Dopensem
 Columns and Foundations
 Lateral Systems

 Breadth Study One Architectural

 Use Requirements
 Layout Aspects and Plans
 Breadth Study Analysis
 Final Design
 Conclusions and Questions

- - Reinforcement:
 Top: (4) #11's

 - Reinforcement:
 Top: (4) #9's
 Bottom: (2) #10's

- Ploor Dispanse
 Columns and Foundation
 Lateral Systems
 Breadth Study One Architectural
 Use Requirements
 Layout Aspects and Plans
 Breadth Study Two Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

Columns and Foundations

·

. . . .

A CARACTER STATE

- Column Design

 - Designed in RAM
 - Checked with PCA

- Typical Interior Foundation:
- Typical Circular Column: 9'x 9', (11) #6's in each direction

- Introduction

 Building Overview
 Building Site
 Existing Design
 Thesis Purpose

 Depth Study Concrete Redesign

 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems

 Breadth Study One Architectural

 Use Requirements
 Layout Aspects and Plans

 Breadth Study Ywo Lighting

 Daylighting Analysis
 Final Design

Lateral Systems

- Similar to the system in the original design
 - Three moment frames in the long axis direction (E-W)
- Shear Wall Design

 - #5 @ 10" horizontally, #5 @ 16" Vertically, (8) #9's in B.E.
- Design Checks
 - Drift, Story Drift, Overturning Moment, and Torsion

Lateral Systems

- Introduction

 Building Overview
 Building Site
 Existing Design
 Thesis Purpose

 Depth Study Concrete Redesign

 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems

 Breadth Study One Architectural

 Use Requirements
 Layout Aspects and Plans
 Breadth Study Yuo Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

Relative Stiffness E-W SW1 SW2 MF1 MF2 MF3 50.0 % 50.0 % 33.5% 52.2% 14.3% 50.0 % 50.0 % 26.6% 37.8% 35.6%

• Extreme torsion at first floor

50.0 % 50.0 % 29.7 % 35.9 % 34.4 % 4 50.0 % 50.0 % 29.8 % 35.9 % 34.3 % 5 50.0% 50.0% 29.8% 35.9% 34.3% Roof 50.0 % 50.0 % 29.8 % 34.2 % 36.0 %

- Introduction

 Building Overview
 Building Site
 Existing Design
 Thesis Purpose

 Depth Study Concrete Redesign

 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems

 Breadth Study One Architectural

 Use Requirements
 Layout Aspects and Plans
 Breadth Study Two Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

Lateral Systems

1	DESIGN SHEAI	R IN EAST -V	VEST DIREC	CTION
Floor	Direct Shear	Total MF1	Total MF2	Total MF3
	5.18	2.23	21.63	1.06
2	8.68	2.63	8.43	3.53
3	28.22	9.53	19.66	11.10
4	34.36	11.64	20.57	13.57
5	141.76	48.01	79.23	56.03
Roof	179.60	60.23	91.00	73.46

- Introduction

 Building Overview
 Building Site
 Existing Design
 Thesis Purpose

 Depth Study Concrete Redesign

 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems

 Breadth Study One Architectural

 Use Requirements
 Layout Aspects and Plans
 Breadth Study Woo Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

BREADTH STUDY ONE

Architectural Investigation of Interior Spaces

A Bard 山田居安

- Introduction
 Building Overview
 Building Site
 Existing Design
 Thesis Purpose
 Depth Study Concrete Redesign
 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems
 Breadth Study One Architectural
 Use Requirements

- Use Requirements
 Layout Aspects and Plans
 Breadth Study Two Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

Use Requirements

- Mid-Large sized AE Firm: ~70 Employees
- Ample desk space: > 40 sq. ft./desk
- Additional Conference Room Space

T.L	Percent Area	Resulting	Percent Area	Actual Area	Percent
Use	at TT	Area	at 1000	of Design	Difference
Cubicles	44.76%	6644	45.50%	6382	-3.94%
Offices	22.40%	3325	13.17%	1847	-44.45%
Conference rooms	13.69%	2032	19.74%	2769	36.29%
Kitchens	4.43%	657	4.56%	640	-2.56%
Libraries	7.24%	1074	9.04%	1268	18.04%
Drafting areas	4.90%	727	5.49%	770	5.94%
Waiting areas	2.59%	384	2.49%	349	-9.08%

- Exasting Design
 Thesis Purpose
 Depth Study Concrete Redesign
 Redesign Overview
 Floor Diaphragm
 Columns and Poundations
 Lateral Systems
 Breadth Study One Architectural
 Use Requirements
 Layout Aspects and Plans
 Breadth Study Two Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

- Curvilinear partitions echo the north façade.
- Concentric elliptical reception area mirrors that of the building's main entry.
- Extensive use of glass preserves the open floor plan.
- Freeform desks and arrangement continue meandering floor plan.
- Simple open design and modular furniture allows for adaptability.

- building Site
 Building Site
 Existing Design
 Thesis Purpose
 Depth Study Concrete Redesign
 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems
 Breadth Study One Architectural
 Use Requirements
 Layout Aspects and Plans
 Breadth Study Two Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

- Curvilinear partitions echo the north façade.
- Concentric elliptical reception area mirrors that of the building's main entry.
- Extensive use of glass preserves the open floor plan.
- Freeform desks and arrangement continue meandering floor plan.
- Simple open design and modular furniture allows for adaptability.

- Building Overview
 Building Site
 Existing Design
 Thesis Purpose
 Depth Study Concrete Redesign
 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems
 Breadth Study One Architectural
 Use Requirements
 Layout Aspects and Plans
 Breadth Study Two Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

- Curvilinear partitions echo the north façade.
- Concentric elliptical reception area mirrors that of
- Extensive use of glass preserves the open floor plan.
- Freeform desks and arrangement continue meandering floor plan.
- Simple open design and modular furniture allows for adaptability.

- Building Overview
 Building Site
 Existing Design
 Thesis Purpose
 Depth Study Concrete Redesign
 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems
 Breadth Study One Architectural
 Use Requirements
 Layout Aspects and Plans
 Breadth Study Two Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

- Curvilinear partitions echo the north façade.
- Concentric elliptical reception area mirrors that of the building's main entry.
- Extensive use of glass preserves the open floor plan.
- Freeform desks and arrangement continue meandering floor plan.
- Simple open design and modular furniture allows for adaptability.

- Building Overview
 Building Site
 Existing Design
 Thesis Purpose
 Depth Study Concrete Redesign
 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems
 Breadth Study One Architectural
 Use Requirements
 Layout Aspects and Plans
 Breadth Study Two Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

- Layout and Plans
- Curvilinear partitions echo the north façade.
- Concentric elliptical reception area mirrors that of the building's main entry.
- Extensive use of glass preserves the open floor plan.
- Freeform desks and arrangement continue meandering floor plan.
- Simple open design and modular furniture allows for adaptability.

- building Site
 Building Site
 Existing Design
 Thesis Purpose
 Depth Study Concrete Redesign
 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems
 Breadth Study One Architectural
 Use Requirements
 Layout Aspects and Plans
 Breadth Study Two Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

- Curvilinear partitions echo the north façade.
- Concentric elliptical reception area mirrors that of the building's main entry.
- Extensive use of glass preserves the open floor plan.
- Freeform desks and arrangement continue meandering floor plan.
- Simple open design and modular furniture allows for adaptability.

- Introduction

 Building Overview
 Building Site
 Existing Design
 Depth Study Concrete Redesign
 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems

 Breadth Study One Architectural
 Use Requirements
 Layout Aspects and Plans
 Breadth Study Woo Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

The Uncubicle

- Superior Aesthetic

■ An innovative, modular design alternative to mundane, common cubicles.

- Introduction

 Building Overview
 Building Site
 Existing Design
 Thesis Purpose

 Depth Study Concrete Redesign

 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems

 Breadth Study One Architectural

 Use Requirements
 Breadth Study Two Lighting

 Daylighting Analysis
 Final Design
 Conclusions and Questions

The Uncubicle

- Superior Aesthetic

■ An innovative, modular design alternative to mundane, common cubicles.

- Introduction

 Building Overview
 Building Site
 Existing Design
 Thesis Purpose

 Depth Study Concrete Redesign

 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems

 Breadth Study One Architectural

 Use Requirements
 Breadth Study Two Lighting

 Daylighting Analysis
 Flain Design
 Conclusions and Questions

Interior Spaces

- Introduction
 Building Overview
 Building Site
 Existing Design
 Thesis Purpose
 Depth Study Concrete Redesign
 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems
 Breadth Study One Architectural
 Use Requirements
 Layout Aspects and Plans
 Breadth Study Two Lighting

 Daylighting Analysis
 Final Design
 Conclusions and Questions

Interior Spaces

- Introduction

 Building Overview
 Building Site
 Existing Design
 Thesis Purpose

 Depth Study Concrete Redesign

 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems

 Breadth Study One Architectural

 Use Requirements
 Layout Aspects and Plans

 Breadth Study Two Lighting

 Daylighting Analysis
 Final Design
 Conclusions and Questions

BREADTH STUDY TWO

Development of Interior Lighting Design

- Introduction

 Building Overview
 Building Site
 Existing Design
 Thesis Purpose

 Depth Study Concrete Redesign

 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems

 Breadth Study One Architectural

 Use Requirements
 Layout Aspects and Plans
 Breadth Study Two Lighting
 Daylighting Analysis

- Dayngming Analysis
 Final Design Conclusions and Questions

Daylighting Calculations

- Step One: Chose adequate light fixtures
- Step Two: Calculate Maximum Spacing
 - Use spacing criteria and distance to work plane to create
- Step Three: Model Floor Plan in AGi32
 - Space was modeled in 3D AutoCAD, the luminaries inserted in AGi32
- Step Four: Effects of daylighting were analyzed
- Illuminence was compared to the minimum level for office space

- Building Overview
 Building Site
 Existing Design
 Thesis Purpose
 Depth Study Concrete Redesign
 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems
 Breadth Study One Architectural
 Use Requirements
 Layout Aspects and Plans
 Breadth Study Two Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

Final Design

- The depth light penetrates the building varies depending on the weather conditions and date
 - Summer Solstice: ~25' on the northern side (3 Rows)
 - Winter Solstice: ~20′ on the northern side (2 Rows)
 - Overcast Day: ~10 ' on the northern side (1 Row)
- If the first three rows of light were all on distinct separate circuits they could be varied as conditions changed as shown above.
- A sensor and dimmer could automatically maximize system efficiency.

- Building Overview
 Building Site
 Existing Design
 Thesis Purpose
 Depth Study Concrete Redesign
 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems
 Breadth Study One Architectural
 Use Requirements
 Layout Aspects and Plans
 Breadth Study Two Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

Final Design

- The depth light penetrates the building varies depending on the weather conditions and date
 - Summer Solstice: ~30' on the northern side (3 Rows)
 - Winter Solstice: ~20' on the northern side (2 Rows)
 - Overcast Day: ~10 ' on the northern side (1 Row)
- If the first three rows of light were all on distinct separate circuits they could be varied as conditions changed as shown above.
- A sensor and dimmer could automatically maximize system efficiency.

- building Overview
 Building Site
 Existing Design
 Thesis Purpose
 Depth Study Concrete Redesign
 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems
 Breadth Study One Architectural
 Use Requirements
 Layout Aspects and Plans
 Breadth Study Two Lighting
 Daylighting Analysis
 Final Design
 Conclusions and Questions

Final Design

- The depth light penetrates the building varies depending on the weather conditions and date
 - Summer Solstice: ~30' on the northern side (3 Rows)
 - Winter Solstice: ~20′ on the northern side (2 Rows)

■ If the first three rows of light were all on distinct separate circuits they could be varied as conditions changed as shown above.

■ A sensor and dimmer could automatically maximize system efficiency.

Renderings

- Introduction

 Building Overview
 Building Site
 Existing Design
 Thesis Purpose

 Depth Study Concrete Redesign

 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems

 Breadth Study One Architectural

 Use Requirements
 Layout Aspects and Plans

 Breadth Study Woo Lighting

 Daylighting Analysis
 Final Design

 Conclusions and Questions

Renderings Introduction Building Overview Building Site Existing Design Thesis Purpose Depth Study - Concrete Redesign Redesign Overview Floor Diaphragm Columns and Foundations Lateral Systems Breadth Study One - Architectural Use Requirements Layout Aspects and Plans Breadth Study Woo - Lighting Daylighting Analysis Final Design Conclusions and Questions a a a francia a la terra se a _____ 2 ----______ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Renderings

- Introduction

 Building Overview
 Building Site
 Existing Design
 Thesis Purpose

 Depth Study Concrete Redesign

 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems

 Breadth Study One Architectural

 Use Requirements
 Layout Aspects and Plans

 Breadth Study Woo Lighting

 Daylighting Analysis
 Final Design

 Conclusions and Questions

ta Er m et m ra m m m m m en en la la co en la co en la co en ______ ----- - -49 X ----1.0 -------

- Introduction

 Building Overview
 Building Site
 Existing Design
 Thesis Purpose

 Depth Study Concrete Redesign

 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems

 Breadth Study One Architectural

 Use Requirements
 Layout Aspects and Plans
 Breadth Study Vmo Lighting
 Daylighting Analysis
 Final Design

 Conclusions and Questions

Conclusions

- The final concrete design proposed in this thesis failed to be more efficient that the existing steel design.
- The final design cost is approximately \$2.50 more per square foot and although lead time was shortened, overall completion could be up to two months longer.
- Concrete could be feasible if the project demanded stricter height limitations, more stringent vibration regulations, tighter site conditions, or more plenum space for MEP

- Introduction

 Building Overview
 Building Site
 Existing Design
 Thesis Purpose

 Depth Study Concrete Redesign

 Redesign Overview
 Floor Diaphragm
 Columns and Foundations
 Lateral Systems

 Breadth Study One Architectural

 Use Requirements
 Layout Aspects and Plans
 Breadth Study Vmo Lighting
 Daylighting Analysis
 Final Design

 Conclusions and Questions

Conclusions

• The office layout is a feasible model for an AE Firm and would provide an adaptable and hopefully stimulating workplace through its variety of architectural aspects.

Lighting

- If the proposed zone system were implemented it would have the ability to save building tenants 13,500 kWh in just the two main areas.
- This equates to over \$2000 dollars at today's energy prices in Philadelphia.

Acknowledgements
 The Harman Group Kirk Harman Chris Shaffer Chris Godshall
 BPG Property Group, Ltd. Margret Michel
Thornton TomasettiKen Murphy
Kristin Maruszewski
Everyone else who helped in any way
CarterHaws 1000 Continental Source Structural Online